

 C_L is the lift coefficient, normalized by the frontal area.

Effect of rear spoiler on typical G.T. racing car.

Figure 15.1 Rear spoiler on G.T. car (Ref. 143).

Adjustable down force

Figure 15.11 G.S. 2G full-scale pressure measurements, unpublished.

Adjustable down force

wing aero down force: 266 lb down wing drag:
60 lb down pressure on deck: 73 lb up
NET with 12° spoiler: 253 lb down

Homework Problem

Assume the drag coefficient of a 3000 pound automobile with a frontal area of 20 ft² is 0.38 but increases to 0.42 with the windows open. Assume its air conditioner draws 2.0 horsepower. Assume calm winds.

When traveling at 65 mph, which is more efficient: i.) keeping the windows open and the air conditioner off, or ii.) closing the windows and

running the air conditioner?

General Considerations

- Down force and aerodynamic drag should be properly balanced for the application
- Keep stagnation point low on front of vehicle

General Considerations

- Avoid flow separation caused by:
 - Excessive body angles
 - Too small radii (nose, radiator diffuser, etc.)
 - Sharp edge attachments (mirrors, handles)
 - Surface roughness
 - Improper internal airflow control
 - Wheel well and underbody treatment

References

- 97. Morelli, Alberto, "Aerodynamic Basic Bodies Suitable for Automobile Applications", Proc of the International Assoc for Vehicle Design, Special Pub, SP3, 1983.
- 140. Schenke, Franz, "The origins of Drag and Lift Reductions on Automobiles with Front and Rear Spoilers," SAE 770389, Society of Automotive Engineers, Warrendale, PA
- 143. Scibor-Rylski, A.J., "Negative Lift Devices on Racing Cars," Paper 19, Proc of the First Symposium on Road Vehicle Aerodyamics, London, 1969.
- 160. Van Valkenburgh, Paul, "Some Technicalities from 1988", Road and Track, April 1989.

At highway speeds, 54% of energy is spent on overcoming aerodynamic drag.

http://www.fueleconomy.gov/feg/atv.shtml

Reducing Drag

http://www.fueleconomy.gov/feg/atv.shtml

